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Suppose that we have n agents and n items which lie in a shared metric space. We would like to match the 
agents to items such that the total distance from agents to their matched items is as small as possible. However, 
instead of having direct access to distances in the metric, we only have each agent’s ranking of the items in 
order of distance. Given this limited information, what is the minimum possible worst-case approximation 
ratio (known as the distortion) that a matching mechanism can guarantee?

Previous work by Caragiannis et al. [2016] proved that the (deterministic) Serial Dictatorship mechanism 
has distortion at most 2n − 1. We improve this by providing a simple deterministic mechanism that has 
distortion O(n2). We also provide the first nontrivial lower bound on this problem, showing that any matching 
mechanism (deterministic or randomized) must have worst-case distortion Ω(log n).

In addition to these new bounds, we show that a large class of truthful mechanisms derived from Deferred 
Acceptance all have worst-case distortion at least 2n − 1, and we find an intriguing connection between thin 
matchings (analogous to the well-known thin trees conjecture) and the distortion gap between deterministic 
and randomized mechanisms.

CCS Concepts: • Theory of computation → Algorithmic game theory and mechanism design; Approx-
imation algorithms analysis.
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1 INTRODUCTION
Social choice theory aims to understand the ways in which the preferences of individuals over 
several alternatives can be aggregated and used to make a collective decision for the group. Typically 
the goal is to design mechanisms that maximize some notion of the total welfare of the participants 
or equivalently minimize some cost. One cost framework that has received increased attention 
over the last decade is metric distortion (see Anshelevich et al. [2021] for a detailed survey of the 
area). In this model, the individuals and the alternatives lie in a shared metric space, which is 
unknown to the mechanism. The participants indicate their preferences over the alternatives by 
giving an ordinal ranking of the alternatives in order of distance. Based on this information, the 
mechanism makes a collective decision with the goal of minimizing the distortion – the worst-case 
approximation ratio between the cost of the mechanism’s choice and the optimal choice with full 
knowledge of the distances in the metric.

The metric distortion framework has been most well understood for elections, where the indi-
viduals represent voters, the alternatives represent candidates, and the goal is to select a single 
candidate with a small total distance to the voters. A long line of work [Anshelevich et al., 2015,
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Anshelevich and Postl, 2017, Charikar and Ramakrishnan, 2022, Gkatzelis et al., 2020, Kempe,

2020a,b, Kizilkaya and Kempe, 2022, Munagala and Wang, 2019, Pulyassary and Swamy, 2021]

pinned down the optimal distortion for deterministic mechanisms at 3, and showed that the optimal

distortion for randomized mechanisms is between 2.1126 and 3 − o(1).
In this paper, we turn our attention to understanding the metric distortion model in a less

understood but similarly ubiquitous social choice problem: minimum-cost matching. Now the

individuals are n agents, and the alternatives are n items that we would like to match to the agents.

The agents and items lie in a shared metric space, unknown to the mechanism, which only receives

each agent’s ranking of the items in order of distance. The cost of a matching is the total of the

distances between the matched pairs, and once again the distortion is the worst-case approximation

ratio between the cost of the mechanism’s chosen matching and the optimal matching.

Previous work [Caragiannis et al., 2016] first studied this problemwith respect to two well-known

mechanisms: Serial Dictatorship (SD) and Random Serial Dictatorship (RSD). In these mechanisms,

the agents are matched sequentially (either in a fixed order or a random order) to their favorite

unmatched item. These mechanisms are particularly attractive because they are truthful – no agent

ever has the incentive to misreport their preferences. Caragiannis et al. [2016] showed that SD

guarantees distortion 2
n − 1, and provided a matching lower bound. They also showed that RSD

guarantees distortion n, and proved a lower bound of Ω(n0.29). This work motivates the following

question, raised by Anshelevich et al. [2021].

Question 1 (Anshelevich et al. [2021, Open problem 2]). What is the distortion of the best ordinal

rule for the minimum-cost metric matching problem? What if we also require truthfulness?

The metric distortion framework has been attractive since the expressive power of metric spaces

allows it to reflect a host of real-world circumstances. In a variety of matching problems with a

notion of distance, algorithms for Question 1 may be useful. Some examples include assigning

students to schools, cars to parking spots, patients to doctors, employees to office buildings, jobs to

servers, and so on. Note that in many of these examples, the items can accommodate more than

one agent, but this can be reduced to the perfect matching setting by having several copies of

an item corresponding to its capacity. It is also worth noting that oftentimes, the metric space is

not completely hidden – for example, school districts often know where students live. However,

the demand that the algorithm works for any metric space can provide a stronger guarantee that

allows for greater flexibility for the agents. For example, if a family finds it more convenient

that their child’s school is closer to a parent’s place of work rather than their home address, a

mechanism that only asks for preferences over schools would be able to accommodate this. In other

settings, participants may prefer not to reveal their location for privacy reasons. Beyond practical

considerations, the metric distortion model gives us a new lens for understanding and evaluating

the efficacy of existing social choice mechanisms, and also provides fertile ground motivating the

development of novel mechanisms that might find use beyond this framework.

1.1 Our contributions and technical overview
New distortion bounds. Our main contributions are new upper and lower bounds for Question 1.

In Section 3, we describe a simple, deterministic matching mechanism that guarantees distortion

O(n2). This is an exponential improvement over SD. The idea of the mechanism is to partition the

agents into sets, and for each set designate a representative who is close to all of the other agents

in the set. This means that the top choices of the representative are good choices for other agents

in the set. If two representatives have a common item among their top choices, then they must

actually be close to each other, and so the sets can be merged with one of the two representatives

becoming the new representative for the merged set. Otherwise, all of the top several choices of
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the representatives are disjoint, and we can match the members of a set to the top choices of their

representative.

In Section 4 we prove the first nontrivial lower bounds for Question 1, showing that any matching

mechanism, regardless of whether or not it is randomized, must have distortion Ω(logn) in the

worst case. The lower bound is based on a metric space where the agents are the leaves of a binary

tree, and the items are internal nodes of the tree. The key is that in every subtree, there is one fewer

item than agents, and so any matching must match one agent outside of the subtree. By considering

a variety of different underlying metric spaces, it can be arranged so that in the optimal matching,

only one agent incurs any cost for being matched outside of their subtree, but the mechanism pays

for one agent at each of the logn levels of the tree.

The impact of truthfulness on distortion. Truthfulness is a crucial feature of matching mechanisms

in applications where agents report their own preferences. Since truthfulness is an additional

constraint on a mechanism, a natural question is whether the optimal distortion for truthful

mechanisms is worse than that for non-truthful mechanisms. We begin to explore this question in

Section 5 by showing that a large class of deterministic truthful mechanisms have distortion at

least 2
n − 1, which is the same as the lower bound proven by Caragiannis et al. [2016] for SD.

Our proof works by identifying a general condition (Definition 1) on mechanisms where the

SD lower bound instance due to Caragiannis et al. [2016] still applies. Interestingly, this condition

captures a wide class of truthful mechanisms that are derived by artificially creating preferences

for the items over the agents and running Deferred Acceptance. Such mechanisms are commonly

used, especially in the school choice literature [Abdulkadiroğlu and Sönmez, 2003, Allman et al.,

2022, Shi, 2022].

This result can be viewed either as an indication that the optimal distortion for truthful mecha-

nisms could be substantially worse than that for non-truthful mechanisms or as a partial character-

ization of the way in which a deterministic truthful mechanism must look different from SD and

Deferred Acceptance in order for it to have low distortion.

Thin matchings and rounding randomized mechanisms. In Section 6, we seek to understand

whether any randomized mechanism with low distortion can be converted into a low distortion

deterministic mechanism in a black box fashion. A priori, one may not expect this to be possible. For

instance, Serial Dictatorship has exponentially worse distortion than Random Serial Dictatorship.

However, we show that it is possible to do such a conversion, with a relatively small blow up in the

distortion.

The general idea is to find a matching among agent-item pairs that the randomized mechanism

is likely to match. If such a matching had high distortion, then the randomized mechanism would

also have high distortion. We use this to show that any randomized mechanism with distortion D
can be rounded to a deterministic mechanism with distortion Dn2. Moreover, we show that the

blow-up factor in this rounding scheme is characterized by what we call the thin matching problem.

This problem asks if given a fractional matching, one can always find a perfect matching such

that across any cut, the weight of the perfect matching is at most a small factor larger than the

weight of the fractional matching. Thin matchings are analogous to the notion of thin trees which

played a key role in recent developments improving approximation algorithms for the Asymmetric

Traveling Salesman Problem [An et al., 2010, Anari and Gharan, 2015, Asadpour et al., 2017, Gharan

and Saberi, 2011]. The thin matching problem is a clean combinatorial question and might be of

independent interest.

Bounds for near-perfect matchings. The distortion of the deterministic mechanism in this work,

as well as the best-known randomized mechanism [Caragiannis et al., 2016], are both polynomially
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large: O(n2) and O(n) respectively. In light of this, it is natural to ask if there is a way to relax the

problem and achieve much better distortion. Indeed, one way to relax the problem called resource

augmentation was studied in the prior work of Caragiannis et al. [2016]. Here we study another

relaxation: instead of outputting a perfect matching, what if our algorithm is allowed to output a

near-perfect matching, a matching between 1 − ε fraction of the agents and items?
1
In Section 7,

we show that this relaxation allows us to lower the distortion significantly. For any constant

ε > 0, there is a randomized mechanism, a simple truncation of the Random Serial Dictatorship,

that achieves a distortion of O(1). We also show that this mechanism can be modified to get a

high-probability distortion guarantee instead of an in-expectation one. We show that there is a

randomized mechanism that outputs a near-perfect matching M , that with high probability has

distortion poly log(n) simultaneously on all metrics compatible with the input preferences. As

a simple corollary, we also get deterministic, albeit exponential time, mechanisms that achieve

distortion poly log(n).
For an alternate view of these results, note that if we have a near-perfect matching with cost c and

a perfect matching with costC , then we can extend the near-perfect matching to a perfect matching

with cost 2c + C . We simply overlay the two matchings, and match any previously unmatched

agent to the unmatched item it is connected two via a path. This means that we can also view these

results as giving a black box way to get a granular upgrade to any distortion result in the perfect

matching setting. For instance, combining this with the mechanism in Section 3, we can obtain a

deterministic mechanism where the total cost is within a O(n2) factor of the optimum cost, and

where all but an ε fraction of the agents are matched at a cost within a poly log(n) factor of the
optimum.

1.2 Related work
Since it was originally introduced by [Hylland and Zeckhauser, 1979], the problem of matching

under incomplete information has been studied under a variety of contexts and models. [Filos-

Ratsikas et al., 2014] first studied distortion in ordinal matching, but rather than considering costs

induced by a metric space, they considered unit-sum and unit-range valuations (for each agent,

their value of the items sums to 1 or their value for each item is in the interval [0, 1] respectively).
We note that the switch from costs to valuations means that the objective is maximum-matching

rather than minimum-matching. In this setting, they showed that RSD guarantees distortionO(
√
n)

and that this is the best possible for randomized mechanisms. For deterministic mechanisms with

unit-sum valuations, Amanatidis et al. [2022b] showed that distortion Θ(n2) is the best possible.
Another interesting variant considers unrestricted valuation functions but allows the mechanism

to query a small number of the true valuations of each agent. Without these queries, one cannot

achieve bounded distortion, but surprisingly with just a few queries per agent, the problem becomes

tractable. Amanatidis et al. [2022b] showed that with O(λ logn) queries per agent, a mechanism

can guarantee distortion O(n1/(λ+1)), and Amanatidis et al. [2022a] showed that even with just two

queries per agent, one can get distortion O(
√
n).

The metric assumption has also been applied to maximum matching with ordinal preferences

rather than minimum matching. There, the best-known distortion bounds are small constants,

even for truthful mechanisms. Anshelevich and Sekar [2016a,b] gave a mechanism that guarantees

distortion 1.6 and a truthful mechanism that guarantees distortion 1.76 (both mechanisms are

randomized).

1
Note that the cost of the near-perfect matching is still compared to the optimal perfect matching, otherwise this would not

be a relaxation.
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Finally, Anshelevich and Zhu [2021] studied the min-cost ordinal matching problem in metric

spaces where the locations of the agents are unknown, but the locations of the items are known.

This is natural in some applications such as facility assignment. They showed that this setting is

substantially easier, giving a deterministic mechanism with distortion 3 which is optimal. Their

mechanism works by imagining that each agent is at the same location as their favorite item, and

then outputting the optimal solution in this “projected” instance where all the distances are known.

2 PRELIMINARIES
Notation and terminology. Throughout the paper wewill useA = {a1,a2, . . . ,an} to denote the set

of agents, and B = {b1,b2, . . . ,bn} to denote the set of items. An ordinal matching problem instance

is given by n preference lists, one provided by each agent. Each preference list is a permutation of

the items, given in increasing order of distance. Agent ai prefers bj over bk if d(ai ,bj ) ≤ d(ai ,bk ),
and ai ’s favorite item in a set S ⊆ B is argminb ∈S d(ai ,b). Similarly, ai ’s favorite t items are the

first t items on their preference list.

Metric spaces. Let d : (A ∪ B) × (A ∪ B) → R≥0 be the distance function of the metric space. By

definition, d satisfies the following three properties.

(1) Identity of indiscernibles: d(x ,y) = 0 if x = y,
(2) Symmetry: d(x ,y) = d(y,x),
(3) Triangle inequality: d(x ,y) ≤ d(x , z) + d(z,y).

In certain definitions of metric spaces, it is required that different elements have positive distance,

but we do not require this. This is justified by allowing different agents or items to “occupy” the

same point in the metric space, in which case their distance is 0, but different points do indeed have

positive distance. We note that just as easily, we can replace 0 distances with sufficiently small ε’s
without changing any results.

Matchings. We will use bijective functionsM : A → B to represent matchings. Let

cost(M) B
∑
i ∈[n]

d(ai ,M(ai ))

denote the cost of the matching M . Let MOPT : A → B denote optimal matching, and let di =
d(ai ,MOPT(ai )) so that cost(MOPT) =

∑
i di . With slight abuse of notation, we will allow M to

also denote a set of matched pairs (often treated as edges in a weighted bipartite graph), so that

(ai ,bj ) ∈ M means thatM(ai ) = bj .

Given a problem instance, the distortion of a particular matchingM is
cost(M )

cost(MOPT)
. The worst-case

distortion of a deterministic matching mechanism is its maximum distortion over all problem

instances (parametrized by n), and the worst-case distortion for a randomized mechanism is the

maximum expected distortion (
E[cost(M )]

cost(MOPT)
) over all problem instances.

When considering randomized mechanisms, we often find it more convenient to view the output

as a fractional matching rather than a distribution over matchings. In particular, a randomized

mechanism is defined by n2 nonnegative real numbers pi, j for i, j ∈ [n] (semantically, the probability

that ai is matched to bj ) such that for each j ,
∑n

i=1 pi, j = 1, and for each i ,
∑n

j=1 pi, j = 1. In this view,

the cost of a matching is

n∑
i=1

n∑
j=1

pi, jd(ai ,bj ) (1)
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3 DISTORTION UPPER BOUND
Theorem 1. There exists a deterministic matching mechanism that guarantees distortion O(n2).

Proof. We will maintain a partition of the agents into sets S1, S2, . . . , and each set will have a

representative r1, r2, . . . and so on. We will maintain the invariant that for every ai ∈ S j ,

d(ai , r j ) ≤ −di + 2
λj

∑
ak ∈Sj

dk (2)

for some λj associated with each set S j . Note that this implies that for each ai ∈ S j ,d(MOPT(ai ), r j ) ≤

d(MOPT(ai ),ai ) + d(ai , r j ) ≤ 2
λj

∑
ak ∈Sj dk . It follows that there are at least |S j | distinct items b for

which

d(b, r j ) ≤ 2
λj

∑
ak ∈Sj

dk (3)

In particular, the above inequality holds when b is any of r j ’s favorite |S j | items.

With this in mind, the matching mechanism is the following.

Algorithm 1. RepMatch

Initially, there are n singleton sets S1, S2, . . . , Sn , with Si = {ai }, ri = ai , and λi = 0.

While there exist two sets Si and Sj such that some item is both one ri ’s favorite |Si | items and one of

r j ’s favorite |Sj | items:

• Replace Si and Sj with Si ∪ Sj .
• The representative for Si ∪ Sj is ri if λi ≥ λj and r j otherwise.
• The new λ for this set is max{λi , λj } if λi , λj , and λi + 1 otherwise.

Arbitrarily match the agents in each Si to the top |Si | choices of ri .

The key is in showing that the invariant (2) holds throughout the algorithm by observing how

the λ’s must change as sets merge. Clearly, the invariant holds at the start of the algorithm.

Let’s suppose that we merge sets S1 and S2, and without loss of generality, λ1 ≤ λ2. Since r2
becomes the representative of the merged sets, we would like to bound the distance for any a ∈ S1
to r2. Suppose that b is an item that is both one of r1’s favorite |S1 | items and one of r2’s favorite
|S2 | items. Then by (2) and (3),

d(a, r2) ≤ d(a, r1) + d(r1,b) + d(b, r2) ≤

(
−di + 2

λ1
∑
ak ∈S1

dk

)
+ 2λ1

∑
ak ∈S1

dk + 2
λ2

∑
ak ∈S2

dk

≤ −di + 2
max{λ1+1,λ2 }

∑
ak ∈S1∪S2

dk

which means that our invariant is maintained, and the new λ for S1 ∪ S2 is max{λ1 + 1, λ2}, as
specified by the algorithm.

This allows us to show another invariant – throughout the algorithm, |S j | ≥ 2
λj
. This follows

because when λ1 ≤ λ2, 2
λ1 + 2λ2 ≥ 2

max{λ1+1,λ2 }
.

To conclude, the total cost of matching the elements of S j to the top |S j | choices of r j is at most

the total distance from the elements of S j to r j plus the total distance from r j to their top |S j | items.

By (2) and (3), both of these terms are at most

|S j | · 2
λj

∑
ak ∈Sj

dk ≤ |S j |
2

∑
ak ∈Sj

dk .
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Therefore, the total cost of the final matching output by the algorithm is at most∑
j

2|S j |
2

∑
ak ∈Sj

dk ≤ 2max

j
|S j |

2
cost(MOPT) ≤ 2n2cost(MOPT)

as desired. □

4 DISTORTION LOWER BOUND
Theorem 2. Every (possibly randomized) matching mechanism has worst-case distortion Ω(logn).

Proof. The goal will be to construct an ordinal matching instance with 2
k
agents and items (i.e.,

specify the preference lists of the agents over the items), along with a collection of metric spaces

that are consistent with the specified preferences, such that any matching mechanism must have

distortion Ω(k) on one of the metric spaces in the collection.

Our matching instances are constructed as follows. To simplify the description of the preference

lists, we will define a metric space such that the preference lists are easy to decipher by ordering

distances in the metric space. The metric space is defined in terms of the distances between vertices

on a weighted undirected graph. The graph is structured as a tree with 2
k
leaves

2
, where the root

has one child, and every other internal vertex has two children. Note that this graph has 2
k
internal

vertices. The items occupy the internal vertices and the agents occupy the leaves. The weight of

an edge (u,v) for which u is the parent of v is 2
k−t

, where t is the distance from u to the root. See

Figure 1 for a helpful diagram.

a1 a2 a3 a4 a5 a6 a7 a8

b1

b2

b3

b4

b5

b6

b7

b8

1 1 1 1 1 1 1 1

2 2 2 2

4 4

8

Fig. 1. The metric space that defines the preferences in our ordinal matching instance for k = 3. b8 is the root
of the tree. The red (internal) nodes are the items and the blue (leaf) nodes are the agents.

We will repeatedly refer to the structure of this tree as a tool for understanding the structure of

the preference lists throughout the proof. The crucial property afforded to us by this construction

is the following.

Claim 1. Consider any vertex v (besides the root) whose parent is u. Then the agents in the subtree

rooted at v prefer the items in that subtree over u and prefer u over all other items.

To see the first part of the claim, note that for any agent ai and item bj in the subtree of v , we
have that

d(ai ,u) = d(ai ,v) + d(v,u) > d(ai ,v) + d(v,bj ) ≥ d(ai ,bj )

2
We define a leaf to be a vertex with no children and an internal vertex to be one with at least one child, so the root is not a

leaf despite having degree 1.

96



EC ’23, July 9-12, 2023, London, United Kingdom Nima Anari, Moses Charikar, and Prasanna Ramakrishnan

using the fact that the distance from v to u is greater than the distance from v to any of the vertices

in its subtree. The second part follows simply because for any agent ai in the subtree of v , and any

bj not in this subtree, and not u, the path from ai to bj must go through u.

We now define a set of 2
k
metric spaces such that any mechanism must have a large distortion

with respect to one of these metric spaces. We will have one metric corresponding to each agent ai .
Once again, the metrics are defined by distances on a weighted undirected graph. We start with the

graph defined above. Then, if P is the set of k + 1 items along the path from ai to the root (including
the root), we delete the edges between vertices in P and add edges from ai to all the items in P . The
newly added edges have a weight of 1, and the other edges have a weight of 0. See Figure 2.

a1 a2 a3 a4 a5 a6 a7 a8

b1

b2

b3

b4

b5

b6

b7

b8

0 0
1

0 0 0 0 0

0

1

0 0

1

0

1

Fig. 2. The consistent metric corresponding to a3.

We claim that these metrics are consistent with the preference lists derived before. Agent ai has
a distance of 1 to every item, so this is consistent with any preference list. For any other agent aj ,
let u be the first common vertex on the paths from ai and aj to the root (in the original tree). Let v
be the child of u such that aj is in the subtree rooted at v . Then aj has distance 0 to u and all the

items in the subtree rooted at v , and distance 2 to all other items. By Claim 1 these distances are

consistent with the preference list for aj that we defined.
Finally, it remains to show that any mechanism must have a large distortion on one of these

metrics. For each of these metrics, cost(MOPT) = 1. This is because we can match ai to the root

(which is at distance 1), and then within every component where the distances are zero, there are

an equal number of agents and items.

We will start by proving the result for deterministic mechanisms and then explain how to extend

this to randomized mechanisms.

Suppose we have a matchingM output by a deterministic mechanism. Consider the following

process for choosing an agent. Eventually, themetric that causes a large distortion for themechanism

will be the metric corresponding to that agent.

• Initially the current vertex is the child of the root.

• Until we reach a leaf:

– Let the left and right children of the current vertex be ℓ and r respectively.
– In the subtree rooted at the current vertex, there is one more agent than item. Therefore,M
matches some agent in this subtree to an item outside the subtree. Mark this agent unlucky.

– If this agent is in the subtree rooted at ℓ, then update the current vertex to be r , and
otherwise update it to be ℓ.

• Choose the agent at the leaf.
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The process designates one unlucky agent at each step, so there are a total of k unlucky agents.

Moreover, in the metric corresponding to the chosen agent, all of the unlucky agents are matched

to an item that is distance 2 away. Hence, these contribute 2k to the cost of the mechanism, and the

chosen agent also has a cost of 1, so the total cost is 2k + 1 = Ω(k) as desired.
Nowwewill see how to extend this to randomizedmechanisms which can now output a fractional

matching rather than a perfect matching. We use a similar process to the one described above. The

crucial fact will be that within the subtree of the current vertex (any vertex besides the root), the

matching gives total weight at least 1 to pairs (ai ,bj ) where ai is in the subtree but bj is not. This is
again because the subtree has one more agent than items.

Instead of saying that this comes from either the left subtree or the right subtree, we can say that

at least 1/2 of this weight must come from either the left or right subtree. If more of the weight

comes from the left subtree, the next current vertex is the right child, and otherwise, it is the left

child.

All of these pairs (ai ,bj ) have distance 2, so the total contribution to the cost at each step is at

least 1. Since there are k steps, the total cost is k + 1 = Ω(k) (where the extra 1 again comes from

the cost of the chosen agent, who has a distance of 1 to every item). □

5 TRUTHFULNESS
Consider the following class of deterministic matching mechanisms.

Definition 1. Say that a mechanism is serializable if there exist permutations π and σ of [n] with
the following property. If the mechanism is given an ordinal matching problem instance where for

each 1 ≤ i < j ≤ n, aπ (i) prefers bσ (i) over bσ (j), then it matches aπ (i) to bσ (i) for all i .

Intuitively, in these problem instances, the mechanism operates like a Serial Dictatorship where

the agents choose in the order π , and σ defines the matching that is outputted. It is easy to see

then that every deterministic Serial Dictatorship is serializable. We’ll show that all serializable

mechanisms fall victim to the same distortion lower bound that applies to Serial Dictatorship.

Claim 2. If a mechanism is serializable, then its worst-case distortion is at least 2
n − 1.

Proof. Our proof is essentially a redux of of the lower bound given by Caragiannis et al. [2016]

for Serial Dictatorship.

Suppose that the underlying metric space is the real number line. For each i , the agent aπ (i) sits
at 2

i−1
. For i < n, the item bσ (i) sits at 2

i
, and bσ (n) sits at −ε .

The optimal matching would match aπ (1) to bσ (n), and aπ (i) to bσ (i−1) for i > 1, for a cost of

1 + ε . However, Definition 1 tells us that for all i , aπ (i) is matched to bσ (i). This match costs 2
i−1

for

1 ≤ i < n, and 2n−1+ε for i = n. Thus, the total cost is 2n −1+ε . As ε tends to 0, the distortion tends

to 2
n − 1 (or equivalently, we can set ε = 0, and break ties in the preferences appropriately). □

Interestingly, the class of serializable mechanisms captures a wide variety of truthful mechanisms

derived from Deferred Acceptance [Gale and Shapley, 1962].

Recall that Deferred Acceptance is a two-sided matching mechanism where participants on each

side of the matching provide ranked preferences of the other side. Imagining that the items also

provide a ranking over the agents, the algorithm works as follows. In rounds, each agent without a

current match “proposes” to their favorite item that they have not yet proposed to. Then each item

compares its proposals to its current match (if it has one), keeps its favorite, and rejects the rest.

This continues until all of the agents are matched.

A natural way to convert this two-sided mechanism into a one-sided mechanism is to artificially

introduce some preferences for the items. This can be done arbitrarily, or with some structure in-

tended to encourage certain outcomes. For example, in the school choice literature [Abdulkadiroğlu
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and Sönmez, 2003, Allman et al., 2022, Shi, 2022], this is used to prioritize students within walking

distance from schools or students from historically disadvantaged neighborhoods. Moreover, since

Deferred Acceptance is truthful from the side of the proposers, any one-sided mechanism derived

in this way is also a truthful mechanism. This captures a wide variety of truthful mechanisms, by

the sheer number of ways to fix each item’s preferences.

However, no such mechanism can have good distortion, by the following.

Theorem 3. If a mechanism is implemented by Deferred Acceptance with fixed preferences for the

items, it is serializable.

Proof. Suppose we run a Serial Dictatorship on the items (in the order b1,b2, . . . ,bn ), using their
preferences to match them to agents. If bi is matched to aj , let π (i) = j. If we make σ the identity

permutation, we claim that π and σ satisfy the property in Definition 1.

Suppose that per Definition 1, we are given an ordinal matching problem instance, where for

each 1 ≤ i < j ≤ n, aπ (i) prefers bi over bj . We will show by induction on k that aπ (k ) gets matched

to bk .
For the base case, note that aπ (1) and b1 are each other’s first choice, so aπ (1) will propose to b1

in the first round, and this match will be unbreakable.

Now suppose that we know that aπ (i) will be matched to bi for i ≤ k . Now consider aπ (k+1).
By the assumption in Definition 1, aπ (k+1) prefers bk+1 over all of bk+2, . . . ,bn . This means that

the only items that aπ (k+1) may propose to before bk+1 are b1,b2, . . . ,bk . But we know that these

will be matched to aπ (1),aπ (2), . . . ,aπ (k ) by the inductive hypothesis, and so any matches between

aπ (k+1) and bi for i ≤ k will eventually be broken.

Thus, aπ (k+1) eventually proposes tobk+1. Now, because of the Serial Dictatorship that was used to
defineπ , we know that the only candidates thatbk+1 might rejectaπ (k+1) for areaπ (1),aπ (2), . . . ,aπ (k)
(those that were matched in the Serial Dictatorship before bk+1’s turn). But each for each i ≤ k ,
aπ (i) prefers bi over bk+1, so aπ (i) would have to propose to bi before bk+1. Since we know that aπ (i)
is matched to bi by the inductive hypothesis, aπ (i) never proposes to bk+1. This means that when

aπ (k+1) proposes to bk+1, the match is made and never changes, which completes the induction.

Thus, our chosen π and σ satisfy the requirements of Definition 1, as desired. □

6 ROUNDING RANDOMIZED MECHANISMS AND THIN MATCHINGS
Suppose that we have a randomized matching mechanism that guarantees some distortion D. Can
we always round the fractional matching that it outputs to a perfect matching in a way that the cost

of the perfect matching is not much larger than the cost of the fractional matching? In particular,

we are concerned with the following question.

Question 2. What is the smallest α = α(n) such that the following holds? If a fractional matching

gives weight pi, j to each pair (ai ,bj ) ∈ A × B, then there exists a perfect matchingM such that for

any metric d we have ∑
(ai ,bj )∈M

d(ai ,bj ) ≤ α
∑

1≤i, j≤n

pi, jd(ai ,bj ).

If a randomized mechanism guarantees distortion D, then this means that on any input, the

fractional matching it outputs satisfies

∑
1≤i, j≤n pi, jd(ai ,bj ) ≤ D · cost(MOPT). This means that if

the above statement is true for some α , then any randomized mechanism that guarantees distortion

D can be rounded to a deterministic mechanism with distortion αD.
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Note that we can get α ≤ n2 quite easily. By Hall’s theorem, the subgraph that consists of the

edges (ai ,bj ) with pi, j ≥
1

n2
must have a perfect matching

3
, and any such matchingM will have∑

1≤i, j≤n

pi, jd(ai ,bj ) ≥
∑

(ai ,bj )∈M

pi, jd(ai ,bj ) ≥
1

n2

∑
(ai ,bj )∈M

d(ai ,bj ).

In particular, since RSD guarantees distortion O(n) [Caragiannis et al., 2016], by computing the

matching probabilities of RSD and taking a matching from the edges that are matched with

probability at least
1

n2
, we can get a deterministic mechanism that gets distortion O(n3). One

interesting feature of this mechanism is that it entirely offloads the problem of dealing with the

preference lists to RSD.

It remains to see what the best factor of α we can guarantee is. We will show that up to an

O(logn) factor, the optimal α is actually given by the following combinatorial question.

Question 3 (Thin matchings). What is the smallest β = β(n) such that the following holds?

Suppose we have a fractional matching of a balanced bipartite graph G = (U ∪ V ,E) that gives

weight pu,v to each edge (u,v). Then there exists a perfect matchingM such that for any cut (S, S),
the weight ofM across the cut is within a factor of β of the weight of the fractional matching across

the cut. i.e.,

|M ∩ (S × S)| ≤ β ·
∑

(u,v)∈S×S

pu,v .

We say that a matchingM satisfying the above inequality for all cuts is β-thin.

Proposition 3. Let α and β be the best answers to Question 2 and Question 3 respectively. Then

β ≤ α ≤ O(logn) · β .

Proof. To prove that β ≤ α , we need to show that if there exists a matching for Question 2

that gets a factor of α , then there exists a matching for Question 3 that gets a factor of α as well.

Indeed, we can use the same matching, and just apply the guarantee for Question 2 to each of the

cut metrics. These metrics assign distance 0 to edges within a cut, and 1 to those across the cut, i.e.,

dS (u,v) := 1[(u,v) ∈ S × S].

Next, we prove that α ≤ O(logn) ·β . We use a well-known consequence of Bourgain’s embedding

[Bourgain, 1985], which says that any metric can be embedded as a conic combination of cut metrics

with distortion O(logn). In particular, for any metric d , there exist non-negative weights γS such

that ∑
S

γSdS (u,v) ≤ d(u,v) ≤ O(logn) ·
∑
S

γSdS (u,v).

3
For any S ⊆ A, if |N (S ) | < |S |, then

∑
ai ∈S

∑
bj <N (S ) pi, j ≥ 1. But this means for some (ai , bj ) ∈ S × (B \ N (S )) has

pi, j ≥ 1

n2
which is a contradiction.
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This means that if we can get a factor of β for Question 3, then we have for any d ,∑
(u,v)∈M

d(u,v) ≤ O(logn)
∑

(u,v)∈M

∑
S

γSdS (u,v)

= O(logn)
∑
S

γS |M ∩ (S × S)|

≤ O(logn) · β
∑
S

γS
∑

(u,v)∈S×S

pu,v

= O(logn) · β
∑
S

γS
∑
u,v

pu,vdS (u,v)

= O(logn) · β
∑
u,v

pu,v
∑
S

γSdS (u,v)

≤ O(logn) · β
∑
u,v

pu,vd(u,v),

which means exactly that we can get a factor of O(logn) · β for Question 2. □

In summary, we see if we can prove strong bounds on Question 3, then we can round any

randomized mechanism to a deterministic one without losing much in terms of distortion.

6.1 Relationship with thin trees
The definition of thinness in Question 3 closely mirrors the well-known notion of thin trees which

concerns finding spanning trees, rather than perfect matchings, with few edges across each cut. A

definition in the style of Question 3 is given below.

Definition 2 (Thin trees). Suppose we have a weighted graph G with edge weights pu,v . We say

that a spanning tree T is β-thin if for any cut (S, S) of the graph,

|T ∩ (S × S)| ≤ β ·
∑

(u,v)∈S×S

pu,v .

With the above definition, the thin tree conjecture [Goddyn, 2004] states that if the edge weights

pu,v form a point in the spanning tree polytope,
4
then there exists an O(1)-thin tree T . We remark

that in the literature this conjecture is sometimes stated with the alternative assumption that the

graph G is 1-edge-connected, i.e., the weights pu,v sum to at least 1 across each cut. Up to constant

factors in thinness, these assumptions are equivalent due to a classic result of Nash-Williams [1961].

Thin trees originated in the study of graph embeddings [Goddyn, 2004], where theywere proposed

as a path towards Jaeger’s flow conjecture [Jaeger, 1984, 1988]. They received significant attention

much later on when Asadpour et al. [2017] showed that an efficient algorithm for finding β-thin
trees implies an O(β) approximation algorithm for the Asymmetric Traveling Salesman Problem

(ATSP). They also gave such an algorithm for β = O(logn/log logn). Anari and Gharan [2015]

gave a proof that O(poly log logn)-thin trees always exist, though their proof is non-constructive.

The thin trees conjecture postulates that O(1)-thin trees always exist (see for example Anari and

Gharan [2015, Conjecture 1.3] and the discussion that follows). See An et al. [2010], Gharan and

Saberi [2011] for some other applications of thin trees in the ATSP literature.

Just as thin trees have found surprising relevance in very different areas, we find it similarly

intriguing that thin matchings are connected to the problem of ordinal metric matching, which on

4
That is, the edge weights are a convex combination of indicators of spanning trees, analogous to a fractional matching, but

for spanning trees.
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the surface seems unrelated. Note that in Question 3, the notions of preference lists and metric

spaces are completely abstracted away, even though they are central to the original problem .

In light of the strong known bounds for thin trees, and the thin trees conjecture, we make the

following analogous conjecture.

Conjecture 1. The optimal β for Question 3 is O(1).

Since Proposition 3 already has a logarithmic factor, for our rounding application an even weaker

version of the above conjecture that just shows a O(poly logn) bound would suffice – it implies

that the optimal randomized and deterministic mechanisms for ordinal metric matching have the

same distortion up to poly log factors.

A natural approach to proving strong bounds for Question 3 would be to adapt the tools used

to make progress on the thin tree conjecture. In particular, the technique used by Asadpour et al.

[2017] was to write the weights pu,v as the mean of a distribution µ over spanning trees – this is

possible by the assumption that pu,v is in the spanning tree polytope. Amongst all possible µ with

this mean, Asadpour et al. [2017] pick the one with the maximum entropy. This ensures that for a

random sample T ∼ µ, each cut value |T ∩ (S × S)| is highly concentrated around its mean, and by

union bounding tail deviation bounds over all the cuts, O(logn/log logn)-thinness follows.
An analogous attempt would be to similarly write a fractional matching as the mean of a

distribution over perfect matchings that exhibits concentration properties. However, the challenge

with matchings is that distributions over them, even max-entropy ones, exhibit strong correlations

that prevent useful concentration inequalities. We demonstrate this with an example depicted in

Figure 3. Consider a graph G which is a cycle of length 4k with vertices numbered 1, 2, . . . , 4k
in the order they appear on the cycle. Let pu,v = 1/2 on every edge of the cycle – a fractional

matching. There are exactly two perfect matchings in G, Modd formed by the odd edges, and

Meven formed by the even edges. There is a unique distribution µ over perfect matchings with

mean p: µ has to put 1/2 mass on each one ofModd andMeven. Now, consider the cut (S, S) where
S = {1, 2, 5, 6, . . . , 4i + 1, 4i + 2, . . . }. This cut has all the edges (2i, 2i + 1) and none of the edges

(2i+1, 2i+2). For a random sampleM ∼ µ, the value of the cut |M ∩(S ×S)| is uniformly distributed

over the set {0, 2k}, which shows that no meaningful concentration around the mean holds here.

While this example rules out strong concentration around the mean, bothModd andMeven still

produce cut values within a factor of 2 of the mean, which tempts one to guess that a perhaps

weaker multiplicative tail bound can be used to prove Conjecture 1. However, we can modify

this example to make it even worse. Let q ∈ [0, 1], and let pu,v be the convex combination of

Modd and Meven with coefficients q and 1 − q respectively. Then with probability q, the sampled

perfect matching will have a cut value 1/q times as large as the fractional matching. We can boost

this failure probability q by parallel repetition. Consider a disjoint union of n/4k cycles of length

4k each, where on each cycle the edge weights alternate between q and 1 − q. A max-entropy

distribution would independently choose the matching in each cycle. Thus with probability at least

1 − (1 − q)n/4k we will get a cut where the sampled perfect matching has 1/q times as many edges

as the fractional matching. We can set k = Θ(1) and q = Θ(1/n) to get a blow-up by a factor of

Θ(n) in some cut with overwhelming probability.

7 NEAR-PERFECT MATCHINGS
In this section, we study a relaxation of the problem, where our mechanism is allowed to output a

non-perfect matching M , matching a subset of agents to a subset of items. We still measure the

performance of the mechanism in terms of distortion (
cost(M )

cost(MOPT)
) or expected distortion (

E[cost(M )]

cost(MOPT)
),

whereMOPT is the optimal perfect matching.
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Fig. 3. The uniform distribution over the blue and red perfect matchings shows no meaningful concentration
for the number of edges of a sample that cross the indicated cut.

Our first result shows that a simple truncation of the Random Serial Dictatorship (RSD) rule

achieves O(1) distortion while matching a 1 − ε fraction of the agents to items. Random Serial

Dictatorship was studied by Caragiannis et al. [2016] for the non-relaxed problem and was shown

to achieve expected distortion ≤ n. Our analysis of the truncated version follows closely the ideas

in their analysis.

Algorithm 2. TruncatedRSD

The goal is to matchm out of n agents to items.

We start with an empty matching. While fewer thanm agents are matched:

• Pick an agent ai uniformly at random from all unmatched agents.

• Match ai to their most preferred unmatched item bj .

Theorem 4. IfM is the matching output by TruncatedRSD, then

E[cost(M)] ≤
m

n + 1 −m
· cost(MOPT).

Note that by settingm = (1 − ε)n, we get expected distortion ≤ (1 − ε)/ε = Oε (1), yielding the

following simple corollary.

Corollary 4. For every constant ε > 0, there is a randomized mechanism that outputs a matching

M of size (1 − ε)n with expected distortion O(1).

Proof of Theorem 4. LetMi be the partial matching after the first i agents have been matched.

We will show by induction that there exists a (random) matching Ni between the n − i unmatched

agents and the n − i unmatched items (Mi ∪ Ni is a perfect matching) such that E[cost(Ni )] ≤
n+1
n+1−i · cost(MOPT) and E[cost(Mi )] ≤

i
n+1−i · cost(MOPT). At the end, by setting i =m, we get that

cost(Mm) ≤
m

n+1−m cost(MOPT) as desired.

For the base case i = 0, we can take N0 to be MOPT and note that M0 is the empty matching.

Clearly cost(N0) =
n+1
n+1cost(MOPT) and cost(M0) = 0.
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Now assume that we have proved the claim for i . We will prove it for i + 1. In iteration i + 1, the
agent we pick, let us call it a, is uniformly randomly picked from all unmatched ones, i.e., those

agents matched in Ni . Now a gets matched to their top available item; the cost of this edge is at

most the cost of edge incident to a in Ni . Therefore the average cost of this edge, averaged over all

unmatched a, is upper-bounded by cost(Ni )/(n − i). Therefore

E[cost(Mi+1)] ≤ E[cost(Mi )] +
E[cost(Ni )]

n − i
≤

(
i

n + 1 − i
+

n + 1

(n + 1 − i)(n − i)

)
cost(MOPT)

=
i + 1

n − i
· cost(MOPT).

It remains to construct Ni+1 and bound its cost. Suppose that agent a gets matched to the item b by

the mechanism. Since both a and b are unmatched at the beginning of the iteration, they must both

be endpoints of edges in Ni . Let the other endpoints of these edges be b
′
and a′ respectively. Nowwe

simply letNi+1 be the matching obtained fromNi by deleting the edges (a,b
′) and (a′,b), and instead

adding the edge (a′,b ′); if a = a′ and b = b ′, we simply delete the edge. It is easy to see that Ni+1 is a

matching with one fewer edge that matches all agents and items still available after this iteration. It

remains to bound its cost. Here we use the triangle inequality: d(a′,b ′) ≤ d(a,b ′)+d(a,b)+d(a′,b)
to get that cost(Ni+1) ≤ cost(Ni ) + d(a,b); the inequality is still valid in the special case where

a = a′ and b = b ′. We already established that E[d(a,b)] ≤ E[cost(Ni )]/(n − i). Therefore

E[cost(Ni+1)] ≤

(
1 +

1

n − i

)
cost(Ni ) ≤

n + 1

n − i
· cost(MOPT),

as desired. □

Next, we show that by losing some logarithmic factors, we can get a mechanism whose output

near-perfect matchingM satisfies a much stronger guarantee: with high probability, it has distortion

(not expected distortion) at most O(log2(n)) simultaneously w.r.t. all metrics d compatible with the

input preference rankings. Note that this is not a trivial implication of Theorem 4. A randomized

mechanism is allowed to hedge its bets, i.e., choose a mixed strategy against an adversary who

chooses the worst metric d . A priori, the gap between pure strategies and mixed strategies can be

very large.

Theorem 5. For any constant ε > 0, there exists a computationally efficient randomized mechanism

that outputs a matchingM of size (1−ε)n such that with probability ≥ 1−1/poly(n),M has distortion

at most O(log2(n)) w.r.t. the optimal perfect matching in all metrics d compatible with the input

preferences.

Proof. If we run TruncatedRSD withm = (1 − ε/10)n, at the end we get a random matching of

sizem with expected distortion O(1/ε). Let x be the fractional (non-perfect) matching which is the

expectation of the output of TruncatedRSD. In other words, x is a vector indexed by pairs of agents

and items, such that xa,b = P[a matched to b]. We know that

cost(x) =
∑

(a,b)∈A×B

d(a,b)xa,b = E[cost(output of TruncatedRSD)] ≤ O(1/ε) · cost(MOPT).

Our goal is to round x to an integral matching, without blowing up the cost by much. We employ

a strategy based on thin matchings, similar to the proof of Proposition 3. Before we explain the

rounding, we have to deal with a technical issue. We do not know how to efficiently compute

the exact vector x ; it is the expectation of the output of TruncatedRSD, but naively we have to

enumerate ≃ n! permutations describing the order in which the agents are picked, in order to

compute x . Instead, we run TruncatedRSD h independent times, and we let x ′
be the average of the
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indicators of theh output matchings. Instead of working with x , we work with x ′
. Ash → ∞, almost

surely x ′ → x . We will eventually set h to be only polynomially large, making the mechanism

computationally efficient.

As in the proof of Proposition 3, we use Bourgain’s embedding [Bourgain, 1985] to write, up

to a distortion of O(log(n)), a hypothetical metric d as a conic combination of cut metrics dS . It is
enough to find a (non-perfect) matchingM that guarantees for every subset S of our metric space:

M(S, S)

x(S, S)
B

|M ∩ (S × S)|∑
(u,v)∈S×S xu,v

≤ β .

An argument very similar to the proof of Proposition 3 would then show that the distortion ofM
w.r.t. any metric compatible with the input rankings is ≤ O(β logn/ε).

We construct thisM by employing a randomized roundingmechanism due to Chekuri et al. [2011].

They showed that for any point y in the matching polytope and a desired parameter γ ∈ (0, 1/2],
one can efficiently produce a random matchingM such that E[1M ] = (1 − γ )y and for any vector

v ∈ [0, 1]A×B , the value ⟨v, 1M ⟩ is tightly concentrated around its mean; in particular if µ ≥ ⟨v,y⟩
and t ≥ 2, then

P[⟨v, 1M ⟩ ≥ tµ] ≤ exp(−µγ (2t − 3)/20).

We would like to apply the above concentration bound with y set to be x ′
and v set to be the

indicator of edges in a cut (S, S); this means ⟨v, 1M ⟩ = |M∩(S×S)|, the exact quantity we would like
to control. However, we need to union bound over all such cuts and there are exponentially many.

A common strategy here, also used in the context of the thin tree problem [Asadpour et al., 2017], is

to use the well-known fact due to Karger [Karger, 1993] that the number of near-minimum cuts in

any weighted graph is only polynomially large. In particular, if we define c to be the minimum cut

c B min

S,∅,A∪B
y(S, S),

then the number of sets S where y(S, S) ≤ ℓ · c is at most (2n)2ℓ for any integer ℓ ≥ 1.

There is a problem with this approach. Unlike in the case of the thin tree problem, there is no

a priori lower bound on the minimum cut c of x ′
or even x , which are fractional matchings, and

not fractional spanning trees. Indeed, the minimum cut in x and/or x ′
can be 0, and the number of

cuts of size 0 can be exponentially large; think of a fractional matching consisting of Ω(n) disjoint
connected components. We overcome this issue by manually removing all small cuts.

Starting with x ′
we produce a new fractional matching x ′′

as follows: every time there is a cut

(S, S) with value in (0, ε/10), we simply remove all the edges in that cut, i.e., set their value to 0. We

repeat until no such cut can be found and we call the result x ′′
. Note that every removal of a cut

increases the number of connected components (counted w.r.t. the nonzero edges) by one, so the

number of iterations can be at most 2n. In particular,

∑
e x

′′
e is only smaller than

∑
e x

′
e by at most

2n · ε/10 = εn/5. Thus, x ′′
is a fractional matching of size at least (1− ε/10)n − εn/5 = (1− 3ε/10)n.

We apply the rounding mechanism of Chekuri et al. [2011] with y = x ′′
and γ = ε/10 to get our

random matchingM . Note that the expected size ofM is at least (1 − γ )(1 − 3ε/10)n ≥ (1 − ε/2)n.
Since the size ofM can never be larger than n, by Markov’s inequality, with probability at least 1/2,

the size ofM will be ≥ (1 − ε)n. Note that we can boost this probability by repeatedly applying the

rounding mechanism of Chekuri et al. [2011] a number of times; we will show that the probability

that M is not thin is negligibly small, so it remains negligibly small even after conditioning on

|M | ≥ (1 − ε)n. So repeating the process, at most a logarithmic number of times, until the first

time we see a matching of size ≥ (1 − ε)n, gives us the desired result. It just remains to show the

probability ofM not being thin is negligibly small.
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The crucial observation is that it suffices to only consider cuts which nontrivially separate exactly

one connected component of x ′′
. We call such cuts fundamental cuts. More precisely, if C1, . . . ,Ck

are the connected components of x ′′
, then a fundamental cut is a pair (S,T ) of disjoint sets such

that S ∪T = Ci for some Ci . By Karger’s arguments, the number of fundamental cuts (S,T ) with
x ′′(S,T ) ≤ ℓε/10 is bounded by

∑
i |Ci |

2ℓ ≤ (2n)2ℓ . We claim that if for each fundamental cut (S,T )
we have, for a logarithmically large β to be set later, that

M(S,T ) ≤ βx(S,T ),

then the same inequality holds over all global cuts (U ,U ), that is

M(U ,U ) ≤ βx(U ,U ).

Consider such a global cut; for each componentCi , the cut (U ,U ) induces a fundamental cut (Si ,Ti ).
5

Note that the edges of the matchingM are a subset of the support of x ′′
, because E[1M ] = (1−γ )x ′′

.

This means that

M(U ,U ) =
∑
i

M(Si ,Ti ) ≤
∑
i

βx(Si ,Ti ) ≤ βx(U ,U ),

where the last inequality follows from the fact that any edge with endpoints in Si andTi must cross

(U ,U ).

So it remains to show that the inequalityM(S,T ) ≤ βx(S,T ) holds for all fundamental cuts with

high probability. We derive these by chainingM(S,T ) ≤ (β/2)x ′′(S,T ) with x ′′(S,T ) ≤ x ′(S,T ) ≤
2x(S,T ).
The inequality x ′(S,T ) ≤ 2x(S,T ) holds with high probability if the number of independent

trials h of TruncatedRSD that we run to obtain x ′
is large enough. In particular, the value of the

output matching of TruncatedRSD in the fundamental cut (S,T ) is a random variable supported on

[0,n] with mean x(S,T ). So by the standard Hoeffding’s inequality, we have

P[x ′(S,T ) − x(S,T ) ≥ t] ≤ exp(−Ω(ht2/n2)).

For any fundamental cut, we have x ′(S,T ) ≥ ε/10. So if we set t = ε/20, we get

P[x ′(S,T ) > 2x(S,T )] ≤ P[x ′(S,T ) − x(S,T ) > ε/20] ≤ exp(−Ω(hε2/n2)).

There are at most 2
O (n)

fundamental cuts, so we have

P[∃fundamental cut (S,T ) : x ′(S,T ) > 2x(S,T )] ≤ exp(O(n) − Ω(hε2/n2)).

It is enough to set h = poly(n/ε) for the above to be negligibly small: exp(−poly(n)).
It remains to show that with high probability for all fundamental cuts (S,T ) we haveM(S,T ) ≤

(β/2)x ′′(S,T ). Here we use the tail bound of [Chekuri et al., 2011] together with the bound on the

number of fundamental cuts of various sizes. Consider an integer ℓ ≥ 1. The number of fundamental

cuts (S,T ) with x ′′(S,T ) ∈ [ℓε/10, (ℓ + 1)ε/10) is at most nO (ℓ)
. For each such cut, we get that

P[M(S,T ) ≥ βx ′′(S,T )/2] ≤ P[M(S,T ) ≥ βℓε/20] ≤ exp(−Ω(βℓε2)).

So union bounding over all such cuts, and then summing over all ℓ, we get

P[∃fundamental cut (S,T ) : M(S,T ) ≥ βx ′′(S,T )/2] ≤
∞∑
ℓ=1

nO (ℓ)
exp(−Ω(βℓε2)).

5
The cut (Si , Ti ) could be trivial, i.e., one of Si or Ti could be ∅, but the arguments still hold.
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For any constantC > 0, there is some constantC ′
such that if we set β = C ′

logn/ε2, we can bound

the above as

∞∑
ℓ=1

exp(O(ℓ logn) − Ω(C ′ℓ logn)) ≤
∞∑
ℓ=1

exp(−Cℓ logn) = O(1/nC ). □

Note that Theorem 5 also implies the existence of a single near-perfect matching whose distortion

is at most O(log2(n)), a nontrivial fact by itself. As a simple corollary, we get a deterministic, albeit

not computationally efficient, mechanism with a similar distortion.

Corollary 5. For any constant ε > 0, there exists a deterministic exponential time mechanism

that outputs a matching of size (1 − ε)n guaranteed to have distortion at most O(log2 n).

Proof. We can simply compute the expected value x of the TruncatedRSD mechanism, then

enumerate all near-perfect matchingsM , and for each one check whetherM(S, S) ≤ O(log2 n)x(S, S)
by enumerating all cuts S . We output the first matchingM which satisfies this thinness condition.

By Theorem 5, such a near-perfect matching is guaranteed to exist. □

8 DISCUSSION
We discuss some qualitative interpretations of our work, as well as various future directions. For ease

of exposition, we split Question 1 into two open problems separating the question of truthfulness.

Open Problem 1. What is the optimal metric distortion for deterministic and randomized mecha-

nisms for min-cost ordinal matching?

On this problem, we narrow the interval of the optimal distortion for deterministic matchings to

[Ω(logn),O(n2)] and for randomized matchings to [Ω(logn),O(n)] (using the upper bound proven

by [Caragiannis et al., 2016] for RSD). Note that our super-constant lower bound contrasts with

several other related metric distortion problems (matching with known item locations, maximum

matching, elections) where constant upper bounds are known. Our work in Section 6 also suggests

that it could be quite possible that the optimal distortions for deterministic and randomized

mechanisms are the same up to log factors.

A priori, it is difficult to tell which of the two bounds is closer to the right answer. The lower

bound could potentially be improved by considering hard metrics with a greater range of distances

(ours only use 0, 1, and 2), but one challenge is that larger distances constrain the preference lists

more severely. This makes it difficult to have a variety of very different possible underlying metric

spaces that all have large distances in different places. On the other hand, the upper bound could

be improved by formalizing this intuition for why lower bounds are difficult into a more clever

charging scheme.

Open Problem 2. What is the optimal metric distortion for deterministic and randomized truthful

mechanisms for min-cost ordinal matching?

We showed that a large class of deterministic mechanisms, which capture a number of known

truthful mechanisms, are all as bad as SD in terms of distortion. Could it be that SD is the best

deterministic truthful mechanism for this problem?

It is not hard to see that for a mechanism to be truthful, it must give each agent a set of items

that only depends on the other agent’s preferences, and then assign the agent their favorite item

in the set (the set is exactly all of the items that the agent could be matched to, over all of their

possible preference lists). The challenge is that it is difficult to conjure such mechanisms that aren’t

serializable since the most natural way to prevent an agent from influencing their own set is for
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decisions to be made in some sequential manner. One can find with a computer search that truthful

non-serializable mechanisms do exist, but they are unnatural.

As a counterpoint, part of the issue may just be a lack of imagination, where our attempts to

design truthful mechanisms tend to skew toward serialization. Resolving this question may require

the development of exciting new kinds of truthful matching mechanisms.
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A LOWER BOUND AGAINST THE BOSTON MECHANISM
In this section we briefly discuss the distortion of the Boston mechanism [Abdulkadiroğlu and

Sönmez, 2003], a commonly used mechanism in the school choice literature which seems very

natural for this problem but unfortunately has exponential distortion.

The mechanism proceeds in rounds as follows. In the first round, each agent proposes to their

favorite item. Then each item that has some proposers chooses one to irrevocably match to and

rejects all others. In the second round, the agents that didn’t get matched then propose to their

second favorite items, and the mechanism continues in the same way until all agents are matched.

Note that the way that the items choose a proposer can be done in a variety of ways: arbitrarily,

randomly, according to some fixed or randomized preference ordering, or in the setting with

two-sided preferences, according to the preference list of the item. For ease we will say that choices

are made according to a fixed priority order, but this can easily be extended to the other settings.

This mechanism seems like a very natural alternative to Serial Dictatorship – by allowing

matchings to happen in parallel, it might cut off the domino effect that causes Serial Dictatorship

to have exponential distortion. However, the same effect can still happen, if to a lesser extent.

Consider the following instance. The metric space is the line, with the agents are at the points

(1, 2, 4, ..., 2k−1) and the items lie at the points (−ε, 2, 4, ..., 2k−1). For t ≥ 1 there are t agents and
t items at the point 2

t
. There is one agent at 1, and one item at −ε . The co-located agents have

identical preferences over the items. Agents have priority in order of their distance to 0.

Then the mechanism will operate as follows. In the first round, for every t ≥ 2, the agents at 2
t

all propose to the same item at 2
t
, and that item chooses one of these agents. On the other hand,

both the agents at 1 and 2 propose to the item at 2, and the item will choose the agent at 1. In

the second round, for every t ≥ 3 the agents at 2
t
, the unmatched agents at 2

t
all propose to the

same item at 2
t
, and that item chooses one of these agents. On the other hand, both the unmatched

agents at 2 and 4 propose to the item at 4, and the item will choose the agent at 2. Thus, essentially
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the same domino effect takes place as with serial dictatorship, only the number of agents and items

at each location must scale linearly to prevent the effect from getting cut off.

It’s not hard to see that the overall cost of the mechanism will be 2
k + 1. As the number of agents

is n = k(k − 1)/2, this shows that the mechanism has distortion 2
Ω(

√
n)
. A similar bound can be

proven for the randomized variants of the mechanism just by increasing the number of agents and

items at each location. This makes the costly matchings likely enough to cause large distortion in

expectation.
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